699 research outputs found

    Stokes-vector evolution in a weakly anisotropic inhomogeneous medium

    Full text link
    Equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of quasi-isotropic approximation of the geometrical optics method, which provides consequent asymptotic solution of Maxwell equations. Our equation generalizes previous results, obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable to describe normal modes conversion in the inhomogeneous media. Remarkably, evolution of the Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation for spin precession in ferromegnetic systems. General theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.Comment: 16 pages, 3 figures, to appear in J. Opt. Soc. Am.

    Gaze–mouse coordinated movements and dependency with coordination demands in tracing.

    Get PDF
    Eye movements have been shown to lead hand movements in tracing tasks where subjects have to move their fingers along a predefined trace. The question remained, whether the leading relationship was similar when tracing with a pointing device, such as a mouse; more importantly, whether tasks that required more or less gaze–mouse coordination would introduce variation in this pattern of behaviour, in terms of both spatial and temporal leading of gaze position to mouse movement. A three-level gaze–mouse coordination demand paradigm was developed to address these questions. A substantial dataset of 1350 trials was collected and analysed. The linear correlation of gaze–mouse movements, the statistical distribution of the lead time, as well as the lead distance between gaze and mouse cursor positions were all considered, and we proposed a new method to quantify lead time in gaze–mouse coordination. The results supported and extended previous empirical findings that gaze often led mouse movements. We found that the gaze–mouse coordination demands of the task were positively correlated to the gaze lead, both spatially and temporally. However, the mouse movements were synchronised with or led gaze in the simple straight line condition, which demanded the least gaze–mouse coordination

    Genome-Wide DNA Methylation Profiling in Early Stage I Lung Adenocarcinoma Reveals Predictive Aberrant Methylation in the Promoter Region of the Long Noncoding RNA PLUT: An Exploratory Study

    Get PDF
    Introduction: Surgical procedure is the treatment of choice in early stage I lung adenocarcinoma. However, a considerable number of patients experience recurrence within the first 2 years after complete resection. Suitable prognostic biomarkers that identify patients at high risk of recurrence (who may probably benefit from adjuvant treatment) are still not available. This study aimed at identifying methylation markers for early recurrence that may become important tools for the development of new treatment modalities. Methods: Genome-wide DNA methylation profiling was performed on 30 stage I lung adenocarcinomas, comparing 14 patients with early metastatic recurrence with 16 patients with a long-term relapse-free survival period using methylated-CpG-immunoprecipitation followed by high-throughput next-generation sequencing. The differentially methylated regions between the two subgroups were validated for their prognostic value in two independent cohorts using the MassCLEAVE assay, a high-resolution quantitative methylation analysis. Results: Unsupervised clustering of patients in the discovery cohort on the basis of differentially methylated regions identified patients with shorter relapse-free survival (hazard ratio: 2.23; 95% confidence interval: 0.66-7.53; p = 0.03). In two validation cohorts, promoter hypermethylation of the long noncoding RNA PLUT was significantly associated with shorter relapse-free survival (hazard ratio: 0.54; 95% confidence interval: 0.31-0.93; p < 0.026) and could be reported as an independent prognostic factor in the multivariate Cox regression analysis. Conclusions: Promoter hypermethylation of the long noncoding RNA PLUT is predictive in patients with early stage I adenocarcinoma at high risk for early recurrence. Further studies are needed to validate its role in carcinogenesis and its use as a biomarker to facilitate patient selection and risk stratification

    Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the microscopy of Carbon Materials Working Group of the ICCP

    Get PDF
    This paper describes the evaluation of petrographic textures representing the structural organization of the organic matter derived from coal and petroleum and their interaction phenomena in the making of steel electrodes, anodes and cathode blocks.This work represents the results of the Microscopy of Carbon Materials Working Group in Commission III of the International Committee for Coal and Organic Petrology between the years 2009 and 2013. The round robin exercises were run on photomicrograph samples. For textural characterization of carbon materials the existing ASTM classification system for metallurgical coke was applied.These round robin exercises involved 15 active participants from 12 laboratories who were asked to assess the coal and petroleum based carbons and to identify the morphological differences, as optical texture (isotropic/anisotropic), optical type (punctiform, mosaic, fibre, ribbon, domain), and size. Four sets of digital black and white microphotographs comprising 151 photos containing 372 fields of different types of organic matter were examined. Based on the unique ability of carbon to form a wide range of textures, the results showed an increased number of carbon occurrences which have crucial role in the chosen industrial applications.The statistical method used to evaluate the results was based on the "raw agreement indices". It gave a new and original view on the analysts' opinion by not only counting the correct answers, but also all of the knowledge and experience of the participants. Comparative analyses of the average values of the level of overall agreement performed by each analyst in the exercises during 2009-2013 showed a great homogeneity in the results, the mean value being 90.36%, with a minimum value of 83% and a maximum value of 95%

    Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas

    Get PDF
    B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis

    In pursuit of visual attention: SSVEP frequency-tagging moving targets.

    Get PDF
    Previous research has shown that visual attention does not always exactly follow gaze direction, leading to the concepts of overt and covert attention. However, it is not yet clear how such covert shifts of visual attention to peripheral regions impact the processing of the targets we directly foveate as they move in our visual field. The current study utilised the co-registration of eye-position and EEG recordings while participants tracked moving targets that were embedded with a 30 Hz frequency tag in a Steady State Visually Evoked Potentials (SSVEP) paradigm. When the task required attention to be divided between the moving target (overt attention) and a peripheral region where a second target might appear (covert attention), the SSVEPs elicited by the tracked target at the 30 Hz frequency band were significantly, but transiently, lower than when participants did not have to covertly monitor for a second target. Our findings suggest that neural responses of overt attention are only briefly reduced when attention is divided between covert and overt areas. This neural evidence is in line with theoretical accounts describing attention as a pool of finite resources, such as the perceptual load theory. Altogether, these results have practical implications for many real-world situations where covert shifts of attention may discretely reduce visual processing of objects even when they are directly being tracked with the eyes

    Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls.

    Get PDF
    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls' STEM participation

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore